
Shortwave bifurcations in a model 665 

REFERENCES 

1. MOROZOV A. I. and SOLOV’YEV L. S., Stationary plasma flow in a magnetic field. In Problems of Plasma Theory, 
Vol. 8, pp. 3-37. Atomizdat, Moscow, 1974. 

2. VATAZHIN A. B., LYUBIMOV G. A. and REGIRER S. A., Magnetohydrodynamic How in Channels. Nauka, 
Moscow, 1970. 

3. GODUNOV S. K. (Ed.), Numerical Solution of Multidimensional Gas-dynamic Problems. Nauka, Moscow, 1976. 

Translated by R.L.Z. 

J. A&. Maths Mechs Vol. 55, No. 5, pp. 665-673, 1991 0021~8928/91$15.00+.00 
Printed in Great Britain. 0 1992 Pergamon Press Ltd 

SHORTWAVE BIRFURCATION IN A MODEL OF 
A SEISMICALLY ACTIVE MEDIUM AND DOMINANT 

FREQUENCIES? 

B. A. MALOMED, V. S. MITLIN and V. N. NIKOLAYEVSKII 

Moscow 
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The evolution equations for nonlinear seismic waves possessing a bounded range of frequencies with 

increasing amplitudes are analysed. It is shown from the evolution equations that the momentum of the 

system is conserved, and properties of the energy functional are investigated. The spatial period of the 

mode with the greatest amplification of the initial perturbation is studied. Conservation of convective 

nonlinearity leads to a stable stationary structure travelhng with the velocity of the nonlinear seismic waves. 

1. A GENERALIZED model of a visco-elastic body with internal oscillators was proposed [ 1,2] for the 
mathematical study of nonlinear seismic waves. For weak one-dimensional plane longitudinal waves 
it reduced to a generalized Burgers-Korteweg De Bries equation 

(1.1) 

where v is the velocity of the displacement and the A,, are positive numbers. Equation (1.1) was 
obtained by a perturbation method. This equation is general because it was the case N = 6 that was 
considered. Furthermore, the coefficients A, were chosen so that there existed a range of oscillation 
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frequencies whose amplitude increased with time. It was supposed that these frequencies play a 
dominant role in seismic waves in actual geomaterials. 

We will begin our discussion with some properties of the equation 
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to which Eq. (1.1) reduces after linearization. This was used when investigating an early stage of the 
evolution of the dominant role. Equation (1.2) will be considered either on a line with attenuation 
conditions for v and all necessary derivatives as Ix 1 + to, or in the domain (0, J!,) with periodic 
boundary conditions, which is equivalent to setting an initial condition in the form of a spatially 
periodic function. The choice of this class of problems to be investigated is connected with the 
properties of the procedure for obtaining (1. l), in which there was a transition to comoving 
coordinates and the “unbounded” form of the solution domain was implicitly used. 

It is clear that both in the linear and nonlinear versions the total momentum 

hi= jvdz (1.3) 

of the domain is conserved over time. 
The behaviour of the quantity 

E = jv2dx (1.4) 

which is interpreted as the total energy of the medium, is more complicated. To elucidate the 
time-dependence of (1.4) we consider solutions of Eq. (1.2) for the problem with attenuation 
conditions at infinity. Changing to Fourier-components vq such that 

co 

Equation (1.2) reduces to the following ordinary differential equation: 

vq’ = P (iq) vq (P (id = il (- W An) (1.5) 

From (1.5) we find 

v (2, t) = 1 C (q) exp [P (iq) t + @] dq, 
1 OD 

c (Q) = 2n s 
b (z, 0) e-@ dir 

--m --oo 
Together with (1.5) we consider the conjugate equation 

v-q * = P (-iq) v_q 

We multiply (1.5) by v+ and (1.6) by vq and add the results. Then 

(1.6) 

d (vqv-q) 1 dt = Q (4 (w-q> 
Q (q) = P(iq) + P (-iq) = 2q2 (--A,q4 + A,q2 - A2) 

(1.7) 
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FIG. 1. 

Two possibilities follow from this (Fig. 1): either the amplitude of all the Fourier components 
diminishes with time (the broken curve), or we have a range of wave numbers in which the 
amplitude of the Fourier components increases. It is also clear that the change in the amplitudes is 
only governed by the even (dissipative) terms of Eq. (1.2). 

By Parseval’s equality the energy of the system is equal to 

We further obtain 

E = -& 1 (hP4) &I 
-03 

ca 

E=& 1 I C (q) I2 exp (Q 04 t) dq 
-CO 

(1.8) 

(1.9) 

The most important case is when Q(q) has zeroes for nonzero values of q, (the solid curve in 
Fig. 1). Here the asymptotic behaviour of E for large values of l is given by Laplace’s method: 

E= vl 2ni, (* 

* 
) t I C h,J 1’ exp (Q (q+) t) (1.10) 

The quantity q, is given by the vanishing of Q ‘(4): 

A4 + (Ala - 3AaAs)tit ‘Is 
Q* = 3Ae 

It is clear that the energy of the system (the spatially averaged squared amplitude of the seismic 
waves) increases exponentially with time. Because the total momentum of the medium M is 
constant, this means that at various points in space the value of v tends either to + 03 or - OJ (Fig. 2). 

FIG. 2. 
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2. It was previously noted [l] that this behaviour of E, which is paradoxical at first glance, is 
associated with its definition: to obtain an expression for the total energy it is necessary to take into 
account successive approximations in the perturbation method. However, for Eq. (1.2) there 
nevertheless exists a functional differing from E by the inclusion of derivatives and decreasing with 
time. Indeed, consider the expression 

Computing the variational derivative of the functional E* we obtain 

(2.1) 

We now multiply both sides of Eq. (1.1) by expression (2.2) and integrate over the solution 
domain. The left-hand side of the resulting expression can be written in the form 

I .a a& au dz ~ dE, -- 
8~ at dt 

and the right-hand side in the form 

(2.3) 

(2.4) 

where G is the sum of terms on the right of (1.2) with odd derivatives with respect to x. 
One can verify that the second integral in (2.4) is identically zero. It therefore follows from (2.3) 

and (2.4) that 

i.e. E* is a nonincreasing quantity. As was shown in [l], Eq. (1.2) governs the evolution of 
transverse waves in a medium with complex visco-elastic rheology. The appearance of higher 
derivatives in the expression for E* , which varies “correctly” with time, is directly associated with 
their presence in the generalized rheological law [ 11. 

Thus the appropriate functional is formed by adding terms to the usual energy E which depend on 
&lax and &%/ax* (cf. [4], where it is shown that the Ginzburg-Landau functional, which depends 
on the unknown function and its spatial derivatives, plays a similar role in the Cahn-Hilliard 
equations [5]). 

3. The solution of problem (1.2) with periodic initial conditions has the form 

u = EC (4) exp [P (id t + WI 

C(-qq)=C(qP, q=2nm/L, m=fl, t-2... 

(3.1) 

and the most rapidly increasing modes correspond to the value q = q, , see (1.1). If the initial 
distribution of v has spatial period L, then the solution possesses interesting properties associated 
with the discreteness of the set of eigenfunctions of the operator on the right-hand side of (1.2) 
which were previously considered for the Cahn-Hilliard equation [3]. In particular, we consider 
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FIG. 3. 

how the period of the fastest-growing mode changes as L changes. In the case under investigation 
the fluctuation amplification coefficient Q(q) is an upwardly convex function in a neighbourhood of 
the point q = q, . If we change L, then we also change the index of the values qm = 2nmlL nearest 
to q, , in the sense of the size of the value of the amplification factor. The condition for changing the 
leading mode has the form [3] 

Q (2nnlL) = v (2n (m + 1) / L) (3.2) 

This condition governs the value of L, at which the mth bifurcation of the period of the fastest 
growing mode occurs (a change of the kinetically favourable regime). 

One can show that for any upwardly convex dependence of the amplification factor and 
sufficiently large values of m the dependence of the bifurcation parameters has a universal form. To 
do this we expand the function Q as a series about the value q, up to squares in the deviation. Using 
the fact that Q’(q,) = 0 we obtain the asymptotic bifurcation condition 

(--2nmlL + q*)2 = (2n (m + 1) / L - q*)2 (3.3) 

After transformation we obtain 

L, = 2nq*-’ (m + ‘I,) = a, (m + ‘/,) (3.4) 

Thus for L 5 d* the period d of the fastest-growing mode is almost identical with d* . These results 
can be illustrated by a graph showing the dependence of the period of the fastest-growing mode on 
L (Fig. 3, see also [3]). It is clear that the dependence consists of linear sections with intervening 
jumps. The graph has the form of a saw with teeth that decrease as L increases. Because the period 
of the fastest-growing mode cannot be smaller than the period d,, of the small-amplitude stationary 
solution of Eq. (1.2), the graph begins at the point d,, , d,, , where d,, = 2T/q,+ is given by the 
equation A6qs4 - A4qs2 +A2 = 0 and is equal to 

a,, = 2n 2-41 ‘12 

A4 + If A42 - UAI 
(3.5) 

The results of this section indicate that for initial perturbations of the medium with characteristic 
length-scale L much greater than the quantity q*-‘, the spatial period of the fastest-growing mode is 
almost independent of the form of the initial perturbation. However, if L -q*-‘, then depending on 
the variation of L the size of the spatial period of the fastest-growing mode can change quite 
strongly. 

The main difference between Eq. (1.1) and other models in nonlinear dynamics, such as the 
fourth-order dispersion-dissipation equation with Burgers-Korteweg de Vries nonlinearity [6] or 
the well-known equation of phase-transition theory [5] is that in our case the left boundary of the 
spectrum of growing modes qs- >O. (The quantity qs- = 2nld,_is given by formula (3.5) with a 
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minus sign in front of the root in the denominator, see also Fig. 1.) Thus the details of the problem 
can lead to a change in the dependence d(L) when L - q,-l. 

In particular, if the coefficients of (1.2) are such that Q(2q_) <O, (i.e. for a sufficiently small region of the 
spectrum corresponding to the growing modes), then as L increases the first leading mode with q = 27rlL leaves 
the domain (qs+, qs- ) before the second leading mode (with q = 47rlL) has entered it. Hence for one or several 
leading bifurcations the graph of the function d(L) will differ from Fig. 3: “windows” will exist (see Fig. 4) for 
which there are no growing modes. the size of L beginning from which the “windows” vanish and the form of 
d(L) is that shown in Fig. 3 is given by d,_m, and the number m is given by the relations Q(qs- (m + l)lm)>O, 
Q(q,ml(m - 1)) <O. Thus a spatially periodic initial distribution of v might not lead to the evolution of a 
dominant mode even in the presence of a domain of positive values of Q(q) if the growing modes lie in a small 
domain of the spectrum and L lies in a window in Fig. 4. 

Physically, the exponential growth of the wave amplitude will sooner or later stop, and this is 
connected mathematically with the “switching-on” of nonlinear effects. One expects that at long 
times a stationary propagating wave will form. 

Indeed, by changing the coefficients of (1,l) the curve Q(q) can be made to touch the q axis at the point q,: 
this moment corresponds to a bifurcative creation of a time-periodic solution of (1.1) [7]. A verification that 
sufficient conditions are satisfied for the periodic orbit that is being formed to be stable for large subcriticality is 
beyond the scope of this paper. However, the general theory [g-10] developed for uniformly distributed 
nonlinear systems with instability of the kind shown on Fig. 1, enables us to assert that at least in a weakly 
subcritical situation a stable stationary structure will form in the form of a propagating wave with a spatial 
period corresponding to q, . 

4. We will consider in more detail the nonlinear equation (1.1). We will first deal with the 
nondispersive case, when the right-hand side of (2.1) only contains even derivatives, i.e. the 
equation has the form 

The trivial solution v = 0 becomes unstable under the condition 

Ad2 > 4A,A, 

where the growing perturbations have wave numbers [l] lying in the interval 

The nonlinear dynamics described by Eq. (4.1) can be investigated 
birfurcation point, i.e. for 

(4.1) 

(4.2) 

(4.3) 

analytically near the 
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A, = V4A,2Ae-i (1 - A)2 (4.4) 

where A is a small parameter. The instability appears for infinitely small A at wave numbers [see 
4.3)] q = q, , where 

q*2 = ‘lzA4A6-i (4.5) 

It is clear that as qs+ - qs_ tends to zero (1.11) reduces to (4.5). Following general methods (see 
e.g. [9, lo]), we shall look for a stationary solution of the nonlinear equation (4.1) of the form 

v (x) = a, (4) cos (42) + a2 (4) sin (294 + a3 (4) cos (394 + . . . (4.6) 

where it is assumed that lq-q,I sX, al-hX2, a3--X3, . . . , [where A is the small parameter 
introduced in (4.4)]. This assumption will be verified by later calculations. 

Substituting (4.6) into (4.1) and equating coefficients of the harmonics, we will first of all express 
a2 in terms of al [by equating the coefficients of sin (2qx)]: 

a2 = aI (9/32) q*-‘A,2A,-i (4.7) 

here q, is given by (4.5). In the derivation of Eq. (4.7) we ignored small terms -A, A2, . . . . 
However, when equating the coefficients of cos(qx) it is necessary to keep small terms -X3, (the 
lower terms -A automatically cancel). As a result we obtain 

a, Wzq.+.u2 - ‘/,A,3A6-2h2 + ‘/,A, (q2 - q*2)21 = 0 (4.8) 

We then substitute expression (4.7) into (4.8) and obtain an equation for the amplitude of the 
fundamental harmonic al(q) [see Eq. (4.6)] which has the trivial solution al = 0 and the nontrivial 
solution 

a12 = (3219) A&l,-’ I(‘l,A,A,-‘)2 3L2 - (42 - q*2)21 (4.9) 

Thus nontrivial solutions of (4.6), (4.7) and (4.9) exists in the wave-number domain 

(92 - q*y< (‘I,A,A,-1)” h2 (4.10) 

for a given small subcriticality parameter X2. 
We note that this is the same domain in which, according to Eqs (4.3)and (4.4), the trivial solution 

is unstable. The amplitude reaches its maximum value 

(ar2)rn3x = *j&4 44 e-%2 (4.11) 

when q2 = q 2. 
The questi*on of the stability of solutions with amplitudes (4.6)-(4.9) is of interest. In view of the 

importance of this problem we shall here give a brief account of the main results in general form. To 
do this we present the general nonstationary solution in the following form: 

u (c, t) = U, (z, t) + U, (z, t) eirp* + B, (z, t) e+q* + U, (x. t) ezixq* f 

+ U, (s, t) e-2iXq* (4.12) 

where U, is the slowly-varying real amplitude of the zeroth harmonic, Ui and U2 are slowly-varying 
complex amplitudes of the first and second harmonics, and q, is taken to be unity. Substituting 
expansion (4.12) into the original equation of the form (4.1) we obtain a system of generalized 
Ginzburg-Landau (GL) equations, which after some necessary reduction can be written in the 
following form: 
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(VI), = i.2U, + 4 (lJJ,,X - x I U, I2 U, - iU,U, 

(Ull), = ‘1” (LTo)xx - (I U, 1% 

(4.13) 

(4.14) 

where X2 is the small subcriticality parameter introduced above, and x and -q2 are arbitrary (not 
small) parameters. 

The presence of the second equation for the slowly relaxing zeroth mode is a major difference 

between system (4.13), (4.14) and the classical GL equation. The family of stationary periodic 
solutions has the same form as in the case of the usual GL equation: 

--- 
(1, = x-’ of h2 - 4kWx (k2 < ~214) (4.15) 

Here k = q-q, = q - 1 is the wave-number separation. However, the stability conditions for 
solution (4.15) are significantly different from the well-known Eckhaus stability criteria [8] for the 
solutions of the GL equation 

(4.16) 

Linearizing Eq. (4.13) and (4.14) about solution (4.15) we find that the stability criteria have the 

form 

_-114X (4 i q2) 3L2 < /C < 0 (4.17) 

Thus the stability domain (4.17) is unusually narrow compared with the classical Eckhaus domain 
(4.16). Another important difference is that in our case only solutions with k < 0 can be stable. From 
the point of view of the original representation (4.12) this means that it is necessary for stability that 
the total wave number q = 1 + k should be smaller than the critical wave number q, = 1 at which 
instability appears. To conclude, we note that the above results hold for a problem without 
boundary conditions, (i.e. specified on the entire --CQ <XC m axis). 

5. The original equation was obtained [l, 21 in a moving system of coordinates, so that a quiescent system in 
which a stable stationary structure has appeared corresponds to waves travelling with the velocity c of linear 
seismic waves. The stability of the stationary structures mean that any “starting” initial perturbation (such as 
white noise) is transformed into waves with spatial period 2dq* and frequency cq, . The introduction of odd 
derivatives into the original equation displaces the dominant frequency from cq,, and moreover leads to 
small-amplitude dominant frequency waves propagating in the moving coordinate system [ll]. However this 
“supplementary” velocity should be considerably less than the velocity of sound c. A detailed consideration of 
the nonlinear equation (1.1) with A3 # 0 and As # 0 should be conducted separately. 

In conclusion, we remark that from the formally mathematical point of view the results of this investigation 
are not restricted to equations of the form (1.1). One could have used any entire function P(dl&) as an 
operator on the right-hand side of (1.1) so long as the function Q(q) = P(iq) + P(-iq) had positive sections. 
The separation of the growing-mode domains (qs-, qs+) from zero (the shortwave bifurcation condition [S]) 
was fundamental to the analysis of the stability of weakly-subcritical stationary solutions in the previous 
section. We note that N = 6 is the spatial derivative of minimum order for which shortwave bifurcation is 

possible for an equation with the operator on the right-hand side depending polynomially on alax. 
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STABILITY OF THE DISPLACEMENT OF IMMISCIBLE 
VISCO-ELASTIC LIQUIDS IN A POROUS MEDIUM? 

I. M. AMETOV, I. SH. AKHATOV and V. A. BAIKOV 

Ufa 

(Received 6 March 1990) 

The stability of the motion of the boundary between two visco-elastic liquids in a porous medium caused by 

the non-equilibrium of filtration fluxes is investigated. Two stages in the development of the instability are 

considered: the first is the development of small perturbations on the surface of the initially unperturbed 

displacement front and the second is the evolution of small perturbations on the surfaces of “fingers” of 

displacing liquid extruded after the development of the first-stage instability. The theoretical analysis shows 

that the use of visco-elastic liquids for displacing oil from strata should increase the stability of the 

displacement process. In the case of visco-elastic liquids with relaxation along the pressure gradient the 

stability of the displacement is due to stabilization of the actual boundary between the liquids, whereas with 

relaxation along the flux it is achieved because of the instability of the “fingers” of displacing fluid. 

DURING the displacement of liquids of greater viscosity by less viscous liquids or gases there is a 
viscous instability of the displacement front in a porous medium. Much work (see, e.g. the reviews 
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